D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Exercise Sheet 2	FS 2025

2.1. Levi-Civita connection on a submanifold.

Let (\bar{M}, \bar{g}) be a Riemannian manifold with Levi-Civita connection \bar{D} , and let M be a submanifold of \bar{M} , equipped with the induced metric $g := i^*\bar{g}$, where $i: M \to \bar{M}$ is the inclusion map. Show that the Levi-Civita connection D of (M, g) satisfies $D_X Y = (\bar{D}_X Y)^{\mathrm{T}}$ for all $X, Y \in \Gamma(TM)$, where the superscript T denotes the component tangential to M and $\bar{D}_X Y$ is defined(!) as $\bar{D}_X Y := \bar{D}_{\bar{X}} \bar{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T\bar{M})$ of X, Y.

2.2. Gradient and Hessian form. Let (M, g) be a Riemannian manifold, D the Levi-Civita connection and $f: M \to \mathbb{R}$ a smooth function on M.

(a) The gradient grad $f \in \Gamma(TM)$ is defined by

$$df(X) = g(\operatorname{grad} f, X), \quad \forall X \in \Gamma(TM).$$

Compute grad f in local coordinates.

(b) The Hessian form $\text{Hess}(f) \in \Gamma(T_{0,2}M)$ is defined by

 $\operatorname{Hess}(X,Y) = g(D_X \operatorname{grad} f, Y), \quad \forall X, Y \in \Gamma(TM).$

Prove that $\operatorname{Hess}(f)$ is symmetric and compute $\operatorname{Hess}(f)$ in local coordinates.

2.3. The exponential map for $SO(n, \mathbb{R})$. We consider the matrix group

$$G := \operatorname{SO}(n, \mathbb{R}) = \{ g \in \mathbb{R}^{n \times n} : g^{-1} = g^{\mathrm{T}}, \ \det(g) = 1 \}$$

which acts on $\mathbb{R}^{n \times n}$ by matrix multiplication. Recall that G is a manifold with tangent bundle

$$TG = \{ (g, gA) : g \in G, A \in \mathbb{R}^{n \times n}, A^{\mathrm{T}} = -A \}.$$

We say that $X \in \Gamma(TG)$ is a *left-invariant vector field* on G if there is some $X_0 \in TG_e$ such that $X_g = gX_0$ for all $g \in G$.

(a) A Riemannian metric $\langle \cdot, \cdot \rangle$ on TG is called *bi-invariant* if both, left translation $l_g: G \to G, \ l_g(x) = gx$ and right tanslation $r_g: G \to G, \ r_g(x) = xg$ are isometries.

Prove that

$$\langle (g, gA), (g, gB) \rangle := \frac{1}{2} \operatorname{trace}(AB^{\mathrm{T}})$$

defines a bi-invariant Riemannian metric on G.

ETH Zürich	Differential Geometry II	D-MATH
FS 2025	Exercise Sheet 2	Prof. Dr. Urs Lang

(b) Let D be the Levi-Civita connection with respect to $\langle \cdot, \cdot \rangle$ on G. Show that for left-invariant vector fields $X, Y \in \Gamma(TG)$ we have

$$D_X(Y) = \frac{1}{2}[X,Y].$$

Hint: Use that the Lie-bracket of left invariant vector fields is left-invariant and satisfies [A, B] = AB - BA on TG_e .

(c) Prove that the exponential map $\exp_e\colon TG_e\to G$ is given by

$$\exp_e(A) = e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!}$$